新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

圆柱的表面积教案

教学目标

1.理解圆柱的侧面积和表面积的含义.

2.掌握圆柱侧面积和表面积的计算方法.

3.会正确计算圆柱的侧面积和表面积.

教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算.

教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题.

教学过程

一、复习准备

(一)口答下列各题(只列式不计算).

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.

二、探究新知

(一)圆柱的侧面积.

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.

2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.

(二)教学例1.

1.出示例1

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)

2.学生独立解答

教师板书: 3.14×0.5×1.8

=1.75×l.8

≈2.83(平方米)

答:它的侧面积约是2.83平方米.

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.

(三)圆柱的表面积.

1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.

2.比较圆柱体的表面积和侧面积的区别.

圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.

(四)教学例2.

1.出示例2

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答

侧面积:2×3.14×5×15=471(平方厘米)

底面积:3.14×=78.5(平方厘米)

表面积:471+78.5×2=628(平方厘米)

答:它的表面积是628平方厘米.

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.

(五)教学例3.

1.出示例3

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

2.教师提问:解答这道题应注意什么?

这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.

3.学生解答,教师板书.

水桶的侧面积:3.14×20×24=1507.2(平方厘米)

水桶的底面积:3.14×

=3.14×

=3.14×100

=314(平方厘米)

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

答:做这个水桶要用1900平方厘米.

4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

5.“四舍五入”法与“进一法”有什么不同.

(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.

三、课堂小结

这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题.圆柱的表面积在实际应用时要注意什么呢?

归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.

四、巩固练习

(一)求出下面各圆柱的侧面积.

1.底面周长是1.6米,高是0.7米

2.底面半径是3.2分米,高是5分米

(二)计算下面各圆柱的表面积.(单位:厘米)

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)

五、课后作业

(一)砌一个圆柱形的沼气池,底面直径是3米,深是2米.在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?

(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

六、板书设计

探究活动

面包的截面

活动目的

培养学生的观察能力和操作能力,发展学生的空间观念.

活动题目

有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

活动过程

1、学生分组讨论.

2、利用橡皮泥捏一个圆柱体,进行实验,验证结论.

3、画出截面图,表示结论,发展空间观念.

参考答案

1、沿水平方向横切一刀,截面是圆形.(如图1)

2、沿垂直方向纵切一刀,截面是一个长方形.(如图2)

3、沿侧面斜切一刀,会形成大小不一的椭圆形.(如图3)

4、从顶面向侧面斜切一刀,会形成椭圆的一部分.(如图4)

5、从上底面斜切一刀到下底面,会形成椭圆的一部分.(如图5)

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号