新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

子集、全集、补集 教学设计 人教必修2

教学目标:

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:子集、补集的概念

教学难点:弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程设计

(一)导入新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】(投影打出)

已知,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集p用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集p有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合p;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集p中元素有-1,1.(口答)

5.(笔练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集p的元素.(口答)

【引入】在上面见到的集M与集N;集M与集p通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作: 读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:AB或BA.

性质:①(任何一个集合是它本身的子集)

(空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例:,可见,集合,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:(或),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确

A ②A ③ ④AA

性质:

(1)空集是任何非空集合的真子集。若A ,且A≠,则A;

(2)如果,则

例1 写出集合的所有子集,并指出其中哪些是它的真子集.

解:集合的所有的子集是,其中的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系。如R,{1}{1,2,3}

②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。

如:{0}。不能写成={0},∈{0}

例2 见教材p8(解略)

例3 判断下列说法是否正确,如果不正确,请加以改正.

(1)表示空集;

(2)空集是任何集合的真子集;

(3)不是

(4)的所有子集是

(5)如果,那么B必是A的真子集;

(6)不能同时成立.

解:(1)不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确.表示同一集合;

(4)不正确.的所有子集是

(5)正确

(6)不正确.当时,能同时成立.

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号