教学目标
1.熟练运用对数运算性质
2.掌握化简、求值技巧
3.培养学生的数学应用意识
教学重点
对数运算性质应用
教学难点
化简、求值技巧
教学方法
学导式
教具准备
投影片2张(1.例题;2.练习题)
教学过程
(I)复习回顾
师:上一节,我们通过例题和练习熟悉了对数运算性质的应用,这一节,我们继续学习利用对数的运算性质进行化简、求值,并希望大家总结一些求值的技巧
(Ⅱ)讲授新课
例6: 已知lg2=0.3010,lg3=0.4771,求lg1.44的值
分析:此题应注意已知条件中的真数2,3,与所求中的真数有内在联系,故应1.44进行恰当变形:1.44=1.22=(3×2210-1)2,然后应用对数的运算性质即可出现已知条件的形式
解:lg1.44=lg(3×22×10-1)2=2(lg3+2lg2-1)=2(0.4771+2×0.3010-1)=0.1582
评述:此题应强调学生注意已知与所求的内在联系
例7: 已知x=c+b,求x
分析:由于x作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b的存在使变形产生困难,故可考虑将c移到等式左端,或者将b变为对数形式。
解法一:
由对数定义可知:
解法二:
由已知移项可得
即
由对数定义知:
解法三:
评述:此题有多种解法,体现了基本概念和运算性质的灵活运用,建议解答不要直接给出,最后引导学生得出,可加强学生对于对数定义及运算性质的理解。
师:接下来,我们继续进行课堂练习
说明:本节课应以学生练习为主,教师适当加以引导,给予辅导
(Ⅲ)课堂练习
1.已知试用…表示
2.已知求的值
3.已知求
说明:上述例题目的在于让学生注重已知与所求的内在联系,并熟练运用对数的运算性质,要求学生板演,发现问题,及时讲评。
(Ⅳ)课时小结
师:通过本节学习,大家应进一步熟悉对数的运算性质的运用,并能掌握一定的解题技巧,提高解题能力。
中考 高考名著
常用成语
新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号