【教学目标】:
掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构
掌握画程序框图的基本规则,能正确画出程序框图。
通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
【教学重点】经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构
【教学难点】难点是能综合运用这些知识正确地画出程序框图。
【学法与教学用具】:
学法:
要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。图形符号都有各自的使用环境和作用
在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
教学用具:计算机,TI-voyage200图形计算器
【教学过程】
引入:
算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
程序框图基本概念:
(1)程序构图的概念
程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要的文字说明。
(2)构成程序框的图形符号及其作用
程序框 | 名称 | 功能 |
起止框 | 表示一个算法的起始和结束,是任何流程图不可少的。 | |
输入、输出框 | 表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。 | |
处理框 | 赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。 | |
判断框 | 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”。 |
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:
1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(3)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执
行B框所指定的操作。
例3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
(算法—自然语言)
第一步: a=2,b=3,c=4;
第二步:p=2+3+4/2;
第三步:S=[p(p-2)(p-3)(p-4)]^1/2
利用TI-voyage200图形计算器演示:(学生先看,再跟着做)
应用:请写出求A(x1,y1),B(x2,y2)的两点距离的一个算法,并画出程序框图。
(学生动手先构思算法,然后画出程序框图,个别好学生利用做TI做实验)
条件结构
条件结构是指在算法中通过对条件的判断,根据条件是否成立而选择不同流向的算法结构。
它的一般形式如右图所示:
注意:
右图此结构中包含一个判断框,根据给定的
条件p是否成立而选择执行A框或B框。无论
p条件是否成立,只能执行A框或B框之一,不
可能同时执行A框和B框,也不可能A框、B框都不执行。
一个判断结构可以有多个判断框。
例4、任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在。画出这个算法的程序框图。
解:
算法分析:判断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中任意两个数的和是否大于第3个数,这就需要用到条件结构。
程序框图:(见课本)
利用TI-voyage200图形计算器演示:(学生先看,再跟着做)
(学生在利用图形计算器的过程中已经渗透着算法的奥妙)
应用:设计求一个数x的绝对值的算法,并画出相应的程序框图。
(当然这个要求学生先画出程序框图,再利用图形计算器来解决,快的学生三分钟可以弄好)
循环结构:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:
(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件p成立时,执行A框,A框执行完毕后,再判断条件p是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件p不成立为止,此时不再执行A框,离开循环结构。
(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件p是否成立,如果p仍然不成立,则继续执行A框,直到某一次给定的条件p成立为止,此时不再执行A框,离开循环结构。
当型循环结构直到型循环结构
注意:
循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。
在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。
例5、设计一个计算1+2+3+…+100的值的算法,并画出程序框图。
解:
算法如下:
第一步:sum=0;
第二步:i=1;
第三步:sum=sum+i;
第四步:i=i+1;
第五步:如果i不大于100,返回重新执行第三步,第四步,第五步,否则,算法结束,最后得到的sum值就是1+2+3+…+100的值。
程序框图(可参看课本)
利用TI-voyage200图形计算器演示:(先看当型循环结构)
(学生会思考:若取不同n,计算1+2+3+…+n又如何?)
(再看直到型循环结构)
(已知循环次数可以用For语句)
应用:设计一个计算的值的算法,并画出程序框图。
课堂小结:
本节课主要讲述了程序框图的基本知识,包括常用的图形符号、算法的基本逻辑结构,算法的基本逻辑结构有三种,即顺序结构、条件结构和循环结构。其中顺序结构是最简单的结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构来表达。
在具体画程序框图时,要注意的问题:流程线上要有标志执行顺序的前头;判断框后边
的流程线应根据情况标注“是”或“否”;在循环结构中,要注意根据条件设计合理的计数变
量、累加变量等,特别要条件的表述要恰当、精确。
利用TI-voyage200图形计算器时,很多学生已对它着迷了,学生会想出更多的问题,互相进行比较、讨论,自己出发掘比课本更重要的东西。
中考 高考名著
常用成语
新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号