1、教材分析
(1)知识结构
(2)重点、难点分析
重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.
难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.
2、教法建议
本节内容需要4课时
第一课时:圆的定义和点和圆的位置关系
(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));
(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.
第二课时:圆的有关概念
(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;
(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.
第三、四课时:点的轨迹
条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.
第一课时:圆(一)
教学目标:
1、理解圆的描述性定义,了解用集合的观点对圆的定义;
2、理解点和圆的位置关系和确定圆的条件;
3、培养学生通过动手实践发现问题的能力;
4、渗透“观察→分析→归纳→概括”的数学思想方法.
教学重点:点和圆的关系
教学难点:以点的集合定义圆所具备的两个条件
教学方法:自主探讨式
教学过程设计(总框架):
一、创设情境,开展学习活动
1、让学生画圆、描述、交流,得出圆的第一定义:
定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.
2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.
从旧知识中发现新问题
观察:
共性:这些点到O点的距离相等
想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?
(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);
(2) 到定点距离等于定长的点都在圆上.
定义2:圆是到定点距离等于定长的点的集合.
3、点和圆的位置关系
问题三:点和圆的位置关系怎样?(学生自主完成得出结论)
如果圆的半径为r,点到圆心的距离为d,则:
点在圆上d=r;
点在圆内d 点在圆外d>r. “数”“形” 二、例题分析,变式练习 练习:已知⊙O的半径为5cm,A为线段Op的中点,当Op=6cm时,点A在⊙O________;当Op=10cm时,点A在⊙O________;当Op=18cm时,点A在⊙O___________. 例1求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上. 已知(略) 求证(略) 分析:四边形ABCD是矩形 A=OC,OB=OD;AC=BD OA=OC=OB=OD 要证A、B、C、D 4个点在以O为圆心的圆上 证明:∵ 四边形ABCD是矩形 ∴ OA=OC,OB=OD;AC=BD ∴ OA=OC=OB=OD ∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上. 符号“”的应用(要求学生了解) 证明:四边形ABCD是矩形 OA=OC=OB=OD A、B、C、D 4个点在以O为圆心,OA为半径的圆上. 小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等. 问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨) 练习1求证:菱形各边的中点在同一个圆上. (目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成) 练习2设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形. (1)和点A的距离等于2cm的点的集合; (2)和点B的距离等于2cm的点的集合; (3)和点A,B的距离都等于2cm的点的集合; (4)和点A,B的距离都小于2cm的点的集合;(A层自主完成) 三、课堂小结 问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调: (1)主要学习了圆的两种不同的定义方法与圆的三种位置关系; (2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可; (3)注重对数学能力的培养 四、作业 82页2、3、4.
中考 高考名著
常用成语
新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号