教学目标
1.了解相反数的意义,会求有理数的相反数;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
相反数的定义 相反数的性质及其判定 相反数的应用
三、教法建议
这节课教学的主要内容是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴——相反数——绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识
1.相反数的意义
(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。
(3)0的相反数是0。也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
2.相反数的表示
在一个数的前面添上“-”号就成为原数的相反数。若表示一个有理数,则的相反数表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.相反数的特性
若互为相反数,则,反之若,则互为相反数。
4.多重符号化简
(1)相反数的意义是简化多重符号的依据。如是-1的相反数,而-1的相反数为+1,所以。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如,。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
中考 高考名著
常用成语
新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号