§10.1统计调查 (第二课时)
【教学重点与难点】
教学重点:了解简单随机抽样调查的方法.
教学难点:简单随机抽样的应用.
【教学目标】
1.了解简单随机抽样的基本步骤和方法.
2..通过抽样调查,初步感受抽样的必要性,通过案例了解简单随机抽样.
【教学方法】
通过经历对具体案例的探究了解抽样调查,体会进行抽样调查的必要性.
【教学过程】
一、创设情境 提出问题
(设计说明:在现实生活中发现并提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性.)
问题:某校有2000名学生,想要了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?
学生只要回答合理即可.
(教学说明:这里所提出问题与第一节相响应,只是在人数上加以变化,从而引发学生的思考.)
二、探索新知 解决问题
自主探究抽样调查
(设计说明:由相同的问题引出不同的调查方法.)
问题1:第一节课探索的问题与本节课所探索的问题有什么不同?
学生回答:人数不同.第一节课只调查50名同学的情况,而本节课要调查2000名学生的情况.
教师讲解:对于这2000名学生,我们可以一一进行调查,但这么做不仅要花费很长的时间,同时也要消耗大量的人力与物力.因此,面对这种情况,我们就需要寻找一既省时省力又能解决问题的方法,这就是抽样调查.
所谓的抽样调查,是一种抽取一部分对象进行调查,然后根据调查数据推断全体对象情况的一种较为简便的方法.其中,我们要考察的全体对象称为总体,组成总体的每一个对象称为个体,被抽取的那些个体组成了一个样本.
问题2:你能说出上面问题中的总体、个体和样本都是什么吗?
学生回答:总体是全校学生,个体是学校里的每一个学生,而抽取出来的所有学生组成了一个样本.
问题3:你认为抽取多少名学生进行调查比较合适?
学生回答的人数适量即可.
问题4:我们所抽取的学生的人数就叫做样本容量,即样本中个体的数量.你认为在抽取样本的时候应注意哪些问题?
学生讨论回答:抽取的样本应具有代表性和广泛性.
问题5:你有什么方法可以使每位同学被抽到的机会相等.
学生只要回答得合理即可.
教师讲解:下面是某同学抽取样本容量为100的调查数据统计表.像这样总体中的每一个个体都有相等的机会被抽到,这样的抽样方法就叫简单随机抽样.
抽样调查100名学生最喜爱节目的人数统计表
表格中的数据也可以用条形图和扇形图来描述(如下图),
从这几个图表中,你能得到哪些信息?
学生回答:可以根据已有的数据估算出全校学生喜欢各类节目所占的百分比等.
问题7:你能举出生活中运用简单随机抽样的实例吗?
学生回答:检验火柴的质量,灯的使用寿命,炸弹的破坏范围等.
问题8:通过以上的学习,你能说明一下简单随机抽样有哪些好处吗?
学生回答得合理即可,如:简单随机抽样较为省时省力,对总体的情况可以起到一个估计 的作用.
(教学说明:本环节设计的问题是为了引导学生经历数据处理的过程,所以教师要留给学生一定的时间和空间,要努力让所有学生都能参与到设计的活动中去,在活动的过程中建立统计观念.本环节的问题都有一定的开放性,教师要关注学生的结论,适时加以引导,特别是问题6中出现简单随机抽样的概念后,老师要让学生明白,用简单随机样本估计总体时,样本是总体的一部分,样本中喜爱种类节目的比例不是总体的比例,所得出的百分比只能用来估计总体的情况.)
三、巩固训练 熟练技能
(设计说明:通过基础练习,进一步感受抽样调查的实用性.)
练习1.下列调查方式合适的是( )
A. 要保证“神舟六号”载人飞船成功发射,对重要零部件采用抽查的方式
B.要了解中央电视台“新闻联播”节目的收视率,采用普查的方式
C. 要了解外国运动员对“奥运村”的满意度,采用抽样调查
D. 要了解一批灯泡的使用寿命,采用普查的方式
学生:选择C.
练习2.一次考试约20000名考生,从中抽取500名考生的成绩进行分析,这个问题的样本是( )
A.500 B.500名
C.500名考生 D.500名考生的成绩
学生:选择D.
练习3.指出下列调查中的总体、个体、样本和样本容量.
(1)从一批电视机中抽取20台,调查电视机的使用寿命.
(2)从学校七年级中抽取30名学生,调查学校七年级学生每周用于数学作业的时间.
学生:(1)总体是这一批电视机的使用寿命,个体是每台电视机的使用寿命,样本是20台电视机的使用寿命,样本容量是20.
(2)总体是学校七年级学生每周用于数学作业的时间,个体是学校七年级每名学生每周用于数学作业的时间,样本是30名学校七年级学生每周用于数学作业的时间,样本容量是30.
(教学说明:这三道练习题的设立是为了考查学生对抽样检查的掌握情况,特别是对抽样抽查中的总体、个体、样本及样本容量的理解.)
四、反思总结 情意发展
(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。)
问题1:本节课你学习了什么?
问题2:本节课你有哪些收获?
问题3:通过今天的学习,你想进一步探究的问题是什么?
(教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)
五、课堂小结
1.本节主要学习抽样调查的方法.
3.注意的问题:
(1)只有在调查总体数目较多时才能使用抽样调查.
(2)抽样调查的总体、个体和样本都与调查的内容相联系,而样本容量只与样本的个体数有关.
六、布置作业
1、课本155页练习1、2、3;
(教学说明:及时作业是巩固课堂学习知识的重要环节,练习题主要训练学生对抽样调查的理解.)
七、拓展练习
(设计说明:在学习基础知识的基础上,拓展学生思维,提高学生的学习兴趣。)
练习1:下列问题适合抽样调查的个数是( )
①要了解一批炮弹的杀伤半径;②要了解一批鞭炮的爆炸百分率;③要了解某班学生的体重情况;④要了解2008北京奥运会的收视率;⑤要了解全国中小学生的视力情况.
A.4 B.3 C.2 D.1
学生:选择A.
练习2:为了了解某市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是 (填序号)
①100位女性老人;②公园内100位老人;③在城市和乡镇先10个点,每个点任选10位老人.
学生:选择③.
(教学说明:本练习是以基础知识为主,出现非单一性的选择,以考查学生对抽样调查的理解.)
【评价与反思】
本节内容是在全面调查的基础上,增加调查人数,从而引出抽样调查.主要介绍简单随机抽样调查的方法及抽样调查中总体、个体、样本、样本容量的概念,属于探究课.
教材在学习了全面调查之后,以原有问题为基础,大幅增加调查的个体数量,从而引发学生探索更适宜的解决办法.整个过程前后呼应,过渡自然,使学生感受数学知识的连贯性,激发学生自主探索的意识.
教学设计上,虽然以自主探究学习为主,但对于某些学生从未接触过的概念,教师要适时给予说明和讲解,不仅要注重学生的交流合作,还要关注学生对新知识的理解情况,让学生在交流合作中发现数学的乐趣,在探究过程中提高数学的应用意识.
中考 高考名著
常用成语
新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号