新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

同底数幂的除法教案

教学建议

1.知识结构:

2.教材分析

(1)重点和难点

重点: 准确、熟练地运用法则进行计算.同底数幂的除法性质是幂的运算性质之一,是整式除法的基础,一定要打好这个基础.

难点: 根据乘、除互逆的运算关系得出法则.教科书中根据除法是乘法的逆运算,从计算这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.所以乘、除互逆的运算关系得出法则是本节的难点.

(2)教法建议:

1.教科书中根据除法是乘法的逆运算,从计算这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.

2.性质归纳出后,不要急于讲例题,要对法则做几点说明、强调,以引起学生的注意.(1)要强调底数是不等于零的,这是因为,若为零,则除数为零,除法就没有意义了.(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数都是正整数,并且,要让学生运用时予以注意.

重点、难点分析

1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即都是正整数,且).

2.指数相等的同底数的幂相除,商等于1,即,其中.

3.同底数幂相除,如果被除式的指数小于除式的指数,则出现负指数幂,规定

(其中为正整数).

4.底数可表示非零数,或字母或单项式、多项式(均不能为零).

5.科学记数法:任何一个数(其中1为整数).

同底数幂的除法(第一课时)

一、教学目标

1.掌握同底数幂的除法运算性质.

2.运用同底数幂的除法运算法则,熟练、准确地进行计算.

3.通过总结除法的运算法则,培养学生的抽象概括能力.

4.通过例题和习题,训练学生的综合解题能力和计算能力.

5.渗透数学公式的简洁美、和谐美.

二、重点难点

1.重点

准确、熟练地运用法则进行计算.

2.难点

根据乘、除互逆的运算关系得出法则.

三、 教学过程

1.创设情境,复习导入

前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.

(1)叙述同底数幂的乘法性质.

(2)计算:①

学生活动:学生回答上述问题.

.(mn都是正整数)

【教法说明】 通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.

2.提出问题,引出新知

思考问题:().(学生回答结果)

这个问题就是让我们去求一个式子,使它与相乘,积为,这个过程能列出一个算式吗?

由一个学生回答,教师板书.

这就是我们这节课要学习的同底数幂的除法运算.

3.导向深入,揭示规律

我们通过同底数幂相乘的运算法则可知,

那么,根据除法是乘法的逆运算可得

也就是

同样,

.

那么,当mn都是正整数时,如何计算呢?

(板书)

学生活动:同桌研究讨论,并试着推导得出结论.

师生共同总结:

教师把结论写在黑板上.

请同学们试着用文字概括这个性质:

【公式分析与说明】 提出问题:在运算过程当中,除数能否为0?

学生回答:不能.(并说明理由)

由此得出:同底数幂相除,底数.教师指出在我们所学知识范围内,公式中的mn为正整数,且mn,最后综合得出:

一般地,

这就是说,同底数幂相除,底数不变,指数相减.

4.尝试反馈,理解新知

例1 计算:

(1) (2)

例2 计算:

(1) (2)

学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.

教师活动:统计做题正确的人数,同时给予肯定或鼓励.

注意问题:例1(2)中底数为(-a),例2(l)中底数为(ab),计算过程中看做整体进行运算,最后进行结果化简.

5.反馈练习,巩固知识

练习一

(1)填空:

(2)计算:

学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

练习二

下面的计算对不对?如果不对,应怎样改正?

(1)(2)

(3)(4)

学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.

四 总结、扩展

我们共同总结这节课的学习内容.

学生活动:①同底数幂相除,底数__________,指数________。

②由学生谈本书内容体会.

【教法说明】 强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

五、布置作业

p143 1.(l)(3)(5),2.(l)(3),3.(l)(3).

参考答案

略.

六、板书设计

7.8 同底数幂的除法

例1 解(l) (2)

例2 解(l) (2)

一般地

同底数幂相除底数不变、指数相减

运算形式 运算方法

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号