新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

数轴教案

教学目标

1.了解数轴的概念和数轴的画法,掌握数轴的三要素;

2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.

二、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义

三要素

应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴

原 点

正方向

单位长度

帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数

比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点

1.数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴.

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.

以数轴是理解有理数概念与运算的重要工具.有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想.另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对数轴的学习.

2.数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”.

(2)取原点向右方向为正方向,并标出箭头.

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用数轴比较有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解

1.规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.

2.所有的有理数,都可以用数轴上的点表示.例如:在数轴上画出表示下列各数的点(如图2).

A点表示-4; B点表示-1.5;

O点表示0; C点表示3.5;

D点表示6.

从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为

同理,,表示是负数;反之是负数也可以表示为

3.正数轴常见几种错误

1)没有方向

2)没有原点

3)单位长度不统一

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号