新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

生活中的平移2 人教课标七年级下册

课题

8.1 生活中的平移

课型

新授

知识目标:

经历观察、分析、操作、欣赏及抽象、概括等过程,探索图形平移的基本性质。

通过具体实例认识平移,理解平移的基本性质,并能应用解决相关的问题。

能力目标:

进一步提高学生观察分析、归纳总结的能力,发展空间观念。

德育目标:

进一步培养学生小组合作、团结互助的品质,增强审美意识。

教学重点

知识目标

教学难点

平移性质的总结

教法

引导发现

学法

小组合作、探究讨论

教具

投影仪

授课教师

教学内容

教学手段

教学建议

教学评价

引入:

小时候,你喜欢游乐园里的哪些游戏?你想过没有,小火车在笔直的铁轨上开动时,火车头走了200米,车尾走了多少米?

你坐过电梯吗?它是如何运动的?你见过老井上的辘轳吗?打水时,哪些物体在动?如何动的?

其实,数学就在我们身边,它有很多规律等待我们去探索、去发现。无论是微观世界的粒子运动,还是浩瀚宇宙中的行星运动,其中最简捷的运动变化形式主要是平移与旋转。

教师提出问题,学生各抒己见

通过实际生活中的一些常见现象引起学生思考,从而引入课题。

对于辘轳,学生可能没见过,可引导学生观察p56的图。

学生的回答只要合理,就应给与肯定。

新知探索:

1、p57、图3—1及问题。

2、平移:在平面内,将一图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形的形状和大小。

在图3—2中,点A、B、C、D分别平移到了点E、F、G、H,A与E,B与F,C与G,D与H分别是一对对应点,AB与EF是一对对应线段;∠BAD与∠FEH是一对对应角。

学生看书思考并回答问题。

教师反馈矫正。

教师也可以以学生常见的平移实例引入平移的概念。

学生找出其它的对应线段、对应角

由图3—1中传送带上的电视机和手扶电梯上的人的运动引入平移的概念。

平移的特征:图形上的每一个点都沿同一方向移动了相同的距离;平移不改变图形的形状和大小。

鼓励学生大胆阐述自己的观点。

教 学 内 容

教学手段

教学建议

教学评价

p58、想一想

平移的性质:经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

学生自主探索,小组合作交流,师生共同订正完成。

1、鼓励学生大胆地用自己的语言描述性质。

2、问题3中,图中有些相等关系并不是通过平移产生的。

3、可将对应点所连的线段若在同一条直线上作为一种特例。

关注学生对问题的归纳总结能力和语言表达能例。

三、达标练习:

p58、例1

p59、随堂练习1、2

p60、试一试

如图,△ABC经过平移得到的△DEF,则图中平行且相等的线段有_________∠BAC=

∠________,∠ACB=∠_______

如图,平移方格纸中的图形,使点A平移到A/处,画出平移后的图形。

学生自主探索,反馈矫正

1、要尽量让学生自己独立完成,鼓励学生之间互相纠错。

2、例1中,要求学生说出根据。

鼓励学生敢于暴露错误的思维过程。

四、课堂小结:

本节课你学会了哪些知识?

学生归纳,教师适当补充。

可从以下两方面引导:

1、本节课有哪些新的收获。

2、本节课还有什么疑问。

鼓励学生各抒己见,只要符合本节课的精神,就应鼓励。

五、作业:p59、习题3.1 1、2、3

设计一幅由平移得到的优美图画。

课题

8.3 生活中的旋转

课型

新授课

说课人

时间

1、经历对生活中与旋转现象有关的图形进行观察、分析、欣赏,以及

动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。

2、通过具体实例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等、对应点与旋转中心的连线所成的角彼此相等的性质。

重点

通过具体实例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等、对应点与旋转中心的连线所成的角彼此相等的性质。

难点

会用所学知识分析生活中的旋转现象

教法

观察探究、动手实践、合作交流。

教具

学具盒中的图形

教学内容

教学活动

教学建议

教学评价

一、引例

二、旋转的定义及有关概念

观察课本

上图情景中的转动现象,有什么共同特征?

钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动成为旋转,这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图形的大小和形状。

引导学生用数学的眼光看待生活中的有关问题,进一步发展学生的数学观,使学生学到活生生的数学。

使学生结合具体情景中理解旋转的含义,切忌死记硬背。

关注学生参与数学活动的主动程度和合作交流的意识与能力。

关注学生在具体情景中识别旋转现象。

教学内容

议一议

如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF,在这个旋转过程中:

旋转中心是什么?旋转角是什么?

旋转中心是O, 旋转角是∠AOD或∠COF或∠BOE

经过旋转,点A、B分别移动到什么位置?

经过旋转,点A移动到点D,点B移动到点E

AO与DO的长有什么关系?BO与EO呢?

AO=DO BO=EO

∠AOD与∠BOE有什么大小关系?

∠AOD=∠BOE

旋转的性质

上图中,点D、E、F分别是A、B、C的对应点。经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

钟表的分针匀速旋转一周需要60分

指出它的旋转中心

经过20分钟,分针旋转了多少度?

解:(1)它的旋转中心是钟表的轴心

(2)分针匀速旋转一周需要60分,因此旋转20分,

分针旋转的角度为

做一做

观察图形,图中正方形ABCD与正方形EFGH边长相等,

E

A D

F H

B C

G

这个图案可以看做是哪个“基本图案”通过旋转得到的?

鼓励学生用多种方法解决。描述中注意1)基本图形2)旋转中心3)旋转角4)旋转方向

六、本节课了解到那些关于旋转的知识

七、作业:

八、教学反思

8·4 简单的旋转作图

课题

8.4 简单的旋转作图

课型

新授课

说课人

时间

教学目标

经历对具有旋转特征的图形进行观察、分析、动手操作、画图等过程,掌握有关画图得操作技能。

2、能够按要求作出简单平面图形旋转后的图形。

重点

能够按要求作出简单平面图形旋转后的图形。

难点

能够按要求作出简单平面图形旋转后的图形。

教法

观察探究、动手实践。

教具

教学内容

教学活动

教学建议

教学评价

一、p69引例

在方格纸上作出“小旗子”绕O点按顺时针方向旋转90o后的图案,并简述理由

观察交流,联想,

做出图形

学生分组讨论,然后自己总结方法

建议如下:

(1)“小旗子”是结构特别简单的平面图形,它的边缘由简单的线段所连成,而且边缘上的关键点仅仅四个。

(2)在方格纸上旋转90o,旋转后的图形恰落在格子点上。

(3)以简单的例子作为本节的导入,符合教学目标的要求。

(4)教师总结

学生只要说的合理即可。

二、例1

p69例1

分析:假设顶点B、C的对应点分别为点

E、F,则,∠BOE,∠COF,∠AOD都是旋转角,

且OE=OB,OF=OC

建议如下:

教师给出图形,先让学生交流。

要重视对“分析”的处理,这是使学生明确“作图”道理的重要途径

可以让学生讨论多种方法,但是重点讲书上例1的方法,让学生切实掌握。

明确:旋转中心、旋转方向、旋转角

小结:旋转作图的方法

找关键点

2、作角相等

3、截线段相等

4、按原方式连结

关注学生参与数学活动的主动程度和合作交流的意识与能力。

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号