一、教学目标
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2,并能运用性质进行有关的证明或计算.
3.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
4.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
二、学法引导
阅读、思考、讲解、分析、转化
三、重点及难点
1.教学重点:平行四边形性质定理的应用
2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
四、课时安排
1课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是我节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“”表示,如图1就是平行四边形,记作“”.
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
如图3,,.
所以四边形是平行四边形,所以.
由此得到
推论:夹在两条平行线间的平行线段相等.
要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出.
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1? 已知:如图1,,.
求证:(1);;.
(2)△的顶点分别是△各边的中点(证法略),课堂提问(投影打出).
①平行四边形两邻边的比为2:5,周长为28,则四条边长分别为___________.
②在中,若,则,.
【总结、扩展】
1.小结
本堂所讲的主要内容有
(1)平行四边形的概念,要理解这个概念的实质.
(2)平行四边形的部分性质.
①关于边的:对边平行;对边相等.
②关于角的:对角相等;邻角互补.
(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.
2.思考:如图1.已知:平面,,求证:.
八、布置作业
教材p141.2 (1)、(2)、(3) p142中 3(1)
九、板书设计
中考 高考名著
常用成语
新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号