一、教学目标
1.掌握矩形的判定定理.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、教法设计
观察、启发、总结、提高,类比探讨,讨论分析,启发式.
三、重点及难点
1.教学重点:矩形的判定.
2.教学难点:矩形的判定及性质的综合应用.
四、课时安排
1课时
五、教具学具准备
教具(一个活动的平行四边形),投影仪及胶片,常用画图工具
六、师生互动活动设计
教具演示、创设情境,观察猜想,推理论证
七、教学步骤
【复习提问】
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
【引入新课】
1.矩形的判定.
2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.
【讲解新课】
1.矩形判定定理
矩形判定定理1:有三个角是直角的四边形是矩形.
矩形判定定理2:对角钱相等的平行四边形是矩形.
分析判定定理1
教师问:四边形内角和等于多少度?根据四边形内角和定理,可知第四个角是多少度?最后由定义知此四边形为矩形.
分析判定定理2
教师问:如图1,这个定理有几个条件?学生答;有两个.(1)是平行四边形,(2)两条对角线相等.
教师问:据此只需征什么就可以了?
学生答:只要证一个角是直角就可以了.
引导学生完成证明.
教师问:两条对角线相等的四边形是不是矩形?
学生答:不是.
教师问:为什么?
学生答:因为两条对角线相等,推不出四边形是平行四边形.
归纳矩形判定方法(由学生小结):
(1)一个角是直角的平行四边形.
(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
2.矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
3.矩形知识的综合应用
例2 已知的对角线,相交于,△是等边三角形,,求这个平行四边形的面积(图2).
分析解题思路:
(1)先判定为矩形.
(2)求出△的直角边的长.
(3)计算.
【总结、扩展】
1.小结
(1)矩形的判定方法l、2都是有两个条件:
①是平行四边形,②有一个角是直角或对角线相等.
判定方法3的两个条件是:①是四边形,②有三个直角.
(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.
2.思考题:已知:如图3中,以为斜边作△,又为直角.求证:四边形是矩形.
八、布置作业
教材p158中3、4,p159中13(1);p196中8
九、板书设计
矩形(二) 矩形的判定 小结 判定定理1:…… 例2…… (1)…… 判定定理2:…… (2)…… |
十、随堂练习
教材p148中1、2
补充
1.若是四边形对角线的交点,且,则四边形是( )
A.平行四边形 B.矩形 C.梯形 D.以上答案均不对
2.已知:在四边形中,,且
求证:四边形是矩形
3.已知中,,,,
求证:四边形是矩形
中考 高考名著
常用成语
新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号