新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

矩形、菱形(2)人教课标八年级下册

一、教学目标

1.掌握矩形的判定定理.

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式.

三、重点及难点

1.教学重点:矩形的判定.

2.教学难点:矩形的判定及性质的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

【引入新课】

1.矩形的判定.

2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.

【讲解新课】

1.矩形判定定理

矩形判定定理1:有三个角是直角的四边形是矩形.

矩形判定定理2:对角钱相等的平行四边形是矩形.

分析判定定理1

教师问:四边形内角和等于多少度?根据四边形内角和定理,可知第四个角是多少度?最后由定义知此四边形为矩形.

分析判定定理2

教师问:如图1,这个定理有几个条件?学生答;有两个.(1)是平行四边形,(2)两条对角线相等.

教师问:据此只需征什么就可以了?

学生答:只要证一个角是直角就可以了.

引导学生完成证明.

教师问:两条对角线相等的四边形是不是矩形?

学生答:不是.

教师问:为什么?

学生答:因为两条对角线相等,推不出四边形是平行四边形.

归纳矩形判定方法(由学生小结):

(1)一个角是直角的平行四边形.

(2)对角线相等的平行四边形.

(3)有三个角是直角的四边形.

2.矩形判定方法的实际应用

除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

3.矩形知识的综合应用

例2 已知的对角线相交于,△是等边三角形,,求这个平行四边形的面积(图2).

分析解题思路:

(1)先判定为矩形.

(2)求出的直角边的长.

(3)计算

【总结、扩展】

1.小结

(1)矩形的判定方法l、2都是有两个条件:

①是平行四边形,②有一个角是直角或对角线相等.

判定方法3的两个条件是:①是四边形,②有三个直角.

(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

2.思考题:已知:如图3中,以为斜边作,又为直角.求证:四边形是矩形.

八、布置作业

教材p158中3、4,p159中13(1);p196中8

九、板书设计

矩形(二)

矩形的判定 小结

判定定理1:…… 例2…… (1)……

判定定理2:…… (2)……

十、随堂练习

教材p148中1、2

补充

1.若是四边形对角线的交点,且,则四边形是( )

A.平行四边形 B.矩形 C.梯形 D.以上答案均不对

2.已知:在四边形中,,且

求证:四边形是矩形

3.已知中,

求证:四边形是矩形

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号