新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

二次函数y=ax2 bx c的图像2 人教课标九年级下册

一、教学目标

使学生会用描点法画出二次函数的图像;

使学生知道抛物线的对称轴与顶点坐标;

通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力;

通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想;

通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。

二、教学重点

会画形如的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。

三、教学难点:确定形如的二次函数的顶点坐标和对称轴。

4.解决办法:

四、教具准备

三角板或投影片

1.教师出示投影片,复习

2.请学生动手画的图像,正好复习图像的画法,完成表格。

3.小结的性质

4.练习

五、教学过程

提问:1.前几节课,我们都学习了形如什么样的二次函数的图像?

答:形如。(板书)

2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下我们将学习形如什么样的二次函数的问题吗?

由学生参考上面给出的三个类型,较容易得到:讨论形如的二次函数的有关问题.(板书)

复习引入

首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯)

请你在同一直角坐标系内,画出函数的图像,并指出它们的开口方向,对称轴及顶点坐标.

这里之所以加上画函数的图像,是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y轴,再沿轴移动的方式,也可以给出图像

先沿轴再沿y轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、更具体.

画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量

的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同

学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名

同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中.

然后提问:你能否在这个直角坐标系中,再画出函数的图像?

由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验,

同时可在画这个图时,把这些经验形成规律,便于学生以后应用.

(l)关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点.

在选取的值之后,计算y的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确.

(2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.)

(3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并符合抛物线的特点.

由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样

找一名同学板演.

学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问:

(1)你能否指出抛物线的开口方向,对称轴,顶点坐标?

将在上面练习中三条抛物线的性质填入所列的有中,如下表:

抛物线

开口方向

对称轴

顶点坐标

向下

(0,0)

向下

(0,-1)

向下

(-1,0)

向下

(-1,-1)

(2)我们已知抛物线的开口方向是由二次函数中的a的值决定的,你能通过上表中的特征,试着总结出抛物线的对称轴和顶点坐标是由什么决定的吗?

这个问题由于是本节课的重点问题,而且不是很容易说清楚,可由学生进行广泛的讨论,先得出对称员的表示方法,再得出顶点坐标。若学生在讨论时没有头绪,教师可适当引导,让学生把这四个函数都改写成的形式,可得

。然后从这四个式子中加以观察,分析,得出结论;(板书)

一般地,抛物线有如下特点:

时,开口向上;时,开口向下;

②对称轴是直线

③顶点坐标是

(3)抛物线有什么关系?

答:形状相同,位置不同。

(4)它们的位置有什么关系?

这个问题可视学生的程度来决定问还是不问,以及回答到什么程度。

根据上节课的学习,学生能想到是平移科来的,可把这四个图像分成以下几个问题来讨论:①抛物线是由抛物线怎样移动得到的?

②抛物线是由抛物线怎样移动得到的?

③抛物线是由抛物线怎样移动得到的?

④抛物线是由抛物线怎样移动得到的?

⑤抛物线是由抛物线怎样移动得到的?

这个问题分两种方式回答:先沿轴,再沿轴移动;或先沿轴,再沿轴移动。

通过这5个问题可使学生由浅入深地得到这四者之间的关系,如图所示:

注意:基本形式中的符号,特别是h

练习:p120练习口答,及时纠正错误。

(四)总结、扩展

一般的二次函数,都可以变形成的形式,其中:

1.a能决定什么?怎样决定的?

答:a的符号决定抛物线的开口方向;a的绝对值大小抛物线的开口大小。

2.它的对称轴是什么?顶点坐标是什么?

六、布置作业

教材p124中1(3);p124中3(1)、(2);p125中

七、板书设计

13.7二次函数的图像(二)

例:抛物线的特点:

(1)

(2)

(3)

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号