新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

等式和它的性质教案

教学设计示例

一、素质教育目标

(一)知识起学点

1.理解:等式的意义,并能举出有关等式的例子.

2.掌握:关于等式变形的两条性质,并能语言叙述.

3.应用:会用等式的两条性质将等式变形,并能对变形说明理由.

(二)能力训练点

通过等式的两条性质的教学,培养学生由等式走向新等式的解题思想,即为以后方程的同解变形打下基础.

(三)德育渗透点

从特殊到一般的思维方法.

(四)美育渗透点

等式的两条性质体现了数学的对称美.

二、学法引导

1.教学方法:采取引导发现法,创设合理的问题情境,激发学生思维的积极性,充分展现学生的主体作用.

2.学生学法:演示实验→等式性质→巩固练习.

三、重点、难点、疑点及解决办法

1.重点:等式概念的认识理解,等式性质的归纳.

2.难点:利用等式的两条性质变形等式.

3.疑点:(1)等式性质2中,关于除数不为零的理解.

(2)利用性质变形时,对“等式两边”的理解.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片、简单实物.

六、师生互动活动设计

师生共同做演示实验,得出等式性质,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(-)创设情境,复习导入

教师在上课开始时,给出如下的数学关系

(出示投影1)

师提出问题:观察上面式子表示了什么关系?由学生回答“相等关系”后引出等式的概念和等式的含义,分清等式的左边和右边.

教师和学生一起完成一个演示实验:

两只手中各拿4支粉笔,现在我们再分别从粉笔盒里拿出两支,放入相应手中,问两只手中粉笔个数的关系?如果我们将开始手中的粉笔各放回两支怎样呢?既扩大到原来的2倍,或缩小到原来的2倍,结果还是相等.

(二)探索新知,讲授新课

教师引导学生,把上面实验抽象为一个数学问题.

即:4=4.

提出问题:由上面两组等式变形,我们可以得出关于等式变形什么结论?把上面式中2,改3或-5行吗?

学生活动:让全体学生参与讨论,启发学生怎样用精炼的语言叙述,或分组推荐代表回答.

师总结等式的性质:

由前两式总结:1.等式的两边都加上(或减去)同一个数或同一个等整式,所得结果仍是等式.

由后两式总结:2.等式的两边都乘以(或除以)同一个数(除数不能为零),所得结果仍是等式.

提出问题:①4=4两边都加上整式如:两边都加上结果还是等式吗?

②第二结论中所说除数可以是零吗?

学生活动:学生回答问题后,教师对上面结论加以补充说明.

教师归纳:以上两个规律,就是我们今天学习的“等式性质”

【教法说明】通过以上两条性质的总结,教师应强调以下四点:

①等式的性质1是加法和减法运算,等式的性质2是乘法或除法运算.

②等式的两边都参与运算,并且是同一种运算.

③加(或减)、乘以(或除以)的是同一个数.

④零不能做除数或分母.

(三)尝试反馈,巩固练习

【教法说明】由于这组题是例题的巩固,因此可以由学生讨论分组,以竞赛形式回答以增加课堂上的参与意识.

(出示投影2)

1.判断:已知等式,下列等式是否成立?

;②;③;④

2.若,请同学们根据等式性质编出三个等式并说出你的编写根据.

【教法说明】这组题是对等式性质的辨析,教学时应多让学生思考,并能说出依据.

(出示投影3)

1.从能不能得到呢?为什么?

2.从能不能得到呢?为什么?

3.从能不能得到呢?为什么?

4.从能不能得到呢?为什么?

学生活动:分组抢答.

【教法说明】从以上题目可知,根据等式的性质,从已知等式出发通过变形可得出新的等式.

(出示投影4)

例 用适当的数或整式填空,使所得结果仍是等式

1.如果,那么

2.如果,那么

3.如果,那么

【教法说明】分析:

1题从已知的一边入手,怎样变形就得到呢?(原等式两边都减去5)根据___________________________________________?

2题观察等式的右边怎样由变形成5(两边加上),即原来两边都加上,根据等式性质1.

3题观察等式左边怎样由变形为,即等式两边都除以0.2,根据等式性质2.

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号