新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

“角的平分线”教学设计

教学目标]

1.会阐述角平分线的性质定理及其逆定理。

2.会应用角平分线定理及其逆定理证明两条线段相等或两个角相等。

3.渗透点的集合的思想。

此外,教学中折纸、画图、文字──符号的翻译活动,有助于学生联想、探索、概括能力的培养。

[引导性材料]

用纸剪一个角,把纸片对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?

把对折的纸片继续任意折一次,然后把纸片展开,又看到了什么?

[教学设计]

从上面折纸中我们发现,纸片第一次对折后的折痕是这个角的平分线;再折一次又会出现两条折痕,而且这两条折痕是等长的(如图3.9-1中的pM、pN)。由此,我们又可以发现,这种等长的折痕可以折去无数对,可是角的平分线除了有平分角的性质,还有其它的性质。

图3.9-1

图3.9-2

操作:(l)折出如图3.9-2中的折痕pD、pE。

(2)你和同桌用三角扳检测你们所折的折痕是否符合图示的要求。

画一画:按照折纸的顺序画出一个角的如图3.9-2中的三条折痕,并度量所画pD、pE是否等长?

问题1:你能用文字语言阐述所画图形的性质吗?

说明:1.设计折纸和画一画的活动,实质是丰富学生对角平分线性质的感知,有利于学生能借助直观从而准确的用文字语言揭示角平分线的性质。

2.由于部分学生常常把“过角平分线上一点向角两边画垂线段”与“过角平分线上一点画角平分线垂线”混为一谈,因此设计操作(l)、(2),为学生能正确画出符合要求的图形,从直观上以及三角板的正确

使用上都作了恰当的铺垫,同时也为定理一的推证作准备。

问题2:根据命题“在角平分线上的点到这个角的两边的距离相等”,用符号语言填写下表:

图形已知事项由已知事项推出的事项

(推证定理1)

问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:

图形已知事项由已知事项推出的事项

pD⊥OB,pE⊥OA,垂足为D、E,pD=pE。

pD⊥OB,pE⊥OA,垂足为D、E,pD=pE。

问题4:用文字语言表述上表中的已知事项和由已知事项推出的事项。

(推证定理2)

问题5:在一个角的内部,除角平分线上的点外,是否有到角的两边距离相等的点?为什么?

在一个角的平分线上,是否有到角的两边距离不相等的点?为什么?

(阅读课本“由定理1、2可知……所有点的集合”)

练一练:参照图3.9-3,填空:

(1)∵AD平分∠BAC,

DC⊥AC,DE⊥AB(已知),

∴DC=DE( )。

(2)∵DC⊥AC,DE⊥AB,DC=DE(已知),

∴点D在∠BAC的平分线上( )。

图3.9-3

[例题解析]

例:(补充例题)已知:如图3.9-4,∠C=∠C′=90°,AC=AC′。

求证:(1)∠ABC=∠ABC′;(2)BC=BC′。(要求不用三角形全等判定)

证明:(1)∵∠C=∠C′=Rt∠(已知)

∴AC⊥BC,AC′⊥BC′(垂直的定义)。

又∵AC=AC′(已知)

∴点A在∠CBC′的角平分线上(到一个角的两边的距离相等的点,在这个角的平分线)。

∴∠ABC=∠ABC′

(2)∵∠C=∠C′,∠ABC=∠ABC′

∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)

(三角形内角和定理)。

即∠BAC=∠BAC′。

∵BC⊥AC,BC′⊥AC′,

∴BC=BC′(在角平分线上的点到这个角的两边的距离相等)。

说明:通过三角形全等的判定的教学,多数学生能熟练地利用三角形全等论证几何命题,这对平面几何的学习有着一定的积极作用,但也会产生消极的作用。消极作用是使学生思考问题时偏向于某种模式,从而影响学生思维灵活性的发展,设计本例,并采用限制的措施,强迫学生打破思维定势,帮助学生克服思维定势的消极作用。

图3.9-4

[课堂练习]

课本例题前练习

[小结]

角平分线的性质定理1、2题证明角相等、线段相等的新途径定理1常常用来证明线段相等(如例题(2));定理2常常用来证明角相等或证明点在一个角的平分线上(如例题(l))。

[作业]

课本习题3.4第5、6、7题。

中考 高考名著

常用成语

新学网 Copyright (C) 2007-2018 版权所有 All Rights Reserved. 豫ICP备09006221号